Dept. of Geosciences Colloquium: Activation and Arrest of Thermal Pressurization in Localized Faults

Dr. Nir Badt, University of Pennsylvania

24 April 2023, 11:00 
Ornstein Building, Room 111 
Dept. of Geosciences Colloquium

 

Abstract:

Thermal Pressurization (TP) is expected to be a dominant frictional weakening mechanism during earthquakes. However, due to experimental limitations there is a lack of direct evidence for the activation of TP in controlled laboratory conditions and most of our knowledge is derived from field studies and theoretical predictions. We present experiments performed by a rotary-shear apparatus where TP is activated in localized faults in Frederick diabase under constant normal stress of 50 MPa, confining pressure of 45 MPa and initial pore water pressure of 25 MPa. We show that by changing the permeability of the host rock we can control the shear stress drop during a TP event in the experimental fault. The TP events are short-lived in bare-surface faults as the opening of existing fractures around the fault plane drains the excess pore fluid. Wider, gouge-filled faults show more persistent frictional weakening, but at a slower rate, which is attributed to the compressibility of the gouge. In addition, we test the effects of transient fault dilation on the duration of a TP event through an expansion of the prevailing TP model, using a one-dimensional numerical simulation. We conclude that dynamic changes to the hydraulic diffusivity around the fault plane and persistent fault dilation, due to geometrical irregularities, are the most likely mechanisms to arrest TP during an earthquake.

 

 

Event Organizer: Dr. Roy Barkan

 

 

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing Contact us as soon as possible >>