Biological & Soft Matter Seminar: Long-range Acoustic Interactions in Insect Swarms: An Adaptive Gravity Model

Dan Gorbonos, WIS

25 November 2015, 11:10 
Kaplun Building, Room 118 
Biological & Soft Matter Seminar

Abstract:

The collective motion of groups of animals emerges from the net effect of the interactions between individual members of the group. In many cases, such as birds, fish, or ungulates, these interactions are mediated by sensory stimuli that predominantly arise from nearby neighbors. But not all stimuli in animal groups are short range. We consider mating swarms of midges, which interact primarily via long-range acoustic stimuli. We exploit the similarity in form between the decay of acoustic and gravitational sources to build a model for swarm behavior. By accounting for the adaptive nature of the midges’ acoustic sensing, we show that our “adaptive gravity” model makes mean-field predictions that agree well with experimental observations of laboratory swarms. Our results highlight the role of sensory mechanisms and interaction range in collective animal behavior. The adaptive interactions that we present here open a new class of equations of motion, which may appear in other biological contexts.

 

 

Seminar Organizer: Guy Yaacoby

Tel Aviv University makes every effort to respect copyright. If you own copyright to the content contained
here and / or the use of such content is in your opinion infringing Contact us as soon as possible >>