Condensed Matter Seminar: Drop impact: complex fluids under extreme stress
Michelle Driscoll, Northwestern
Abstract:
Complex fluids exhibit a variety of exotic flow behaviours under high stresses, such as shear thickening and shear jamming. Rheology is a powerful tool to characterise these flow behaviours over the bulk of the fluid. However, this technique is limited in its ability to probe fluid behaviour in a spatially resolved way. Here, I will show how we can utilize ultrahigh-speed imaging and the free-surface geometry in drop impact as a new tool for studying the flow of dense colloidal suspensions. In addition to observing Newtonian-like spreading and bulk shear jamming, we observe the transition between these regimes in the form of localized patches of jammed suspension in the spreading drop. This system offers a unique lens with which to study shear-thickening fluids, allowing us to obtain flow information in a spatially-localized manner, so that we can observe coexisting solid and liquid phases. Furthermore, we capture shear jamming as it occurs via a solidification front traveling from the impact point, and show that the speed of this front is set by how far the impact conditions are beyond the shear thickening transition.
Event Organizer: Dr. Dominik Juraschek